edexcel "

Mark Scheme (Results)

January 2014

IAL Chemistry (WCH02/01)
Unit 2: Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask the Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037627
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/ words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	B		$\mathbf{1}$
Question Number Correct Answer Reject Mark $\mathbf{2}$ B $\mathbf{1}$			

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	A		$\mathbf{1}$
Question Number Correct Answer Reject Mark $\mathbf{1 4}$ D $\mathbf{1}$			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0}$	C		$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	(No because) The oxidation number of iodine in HIO_{3} and $\mathrm{I}_{2} \mathrm{O}_{5}$ is $\mathbf{+ 5 / 5 + / \mathbf { V }}$ OR The oxidation number $\mathbf{+ 5 / 5 + / \mathbf { V }}$ remains the same.	Yes	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i)}$	To remove the water formed	Water of hydration	
	OR To prevent the 'back'/reverse reaction/to favour the right hand side/ to move the position of the equilibrium to the right/ to prevent $\mathrm{I}_{2} \mathrm{O}_{5}$ reacting with water	OR To stop hydrolysis of iodine pentoxide	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (\text { iii) }}$	$\mathrm{I}_{2} \mathrm{O}_{5} \rightarrow \mathrm{I}_{2}+2 \frac{1}{2} \mathrm{O}_{2}$	Oxygen gas on both sides of the equation.	
Allow multiples/fractions			
Allow also the use of \rightleftharpoons. Ignore state symbols even if incorrect. Ignore temperatures.		$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)	Double-bonded oxygens at the 4 corners, each with 2 lone pairs (1) Iodine to have 12 electrons and the central oxygen to be single-bonded with two lone pairs Alternative diagrams with dative covalent bonds instead of double bonds to the oxygen, but then the oxygen would have three lone pairs, could be allowed for one mark. Allow one mark for correct diagram with all dots or all crosses Allow dots and crosses to be other way round, • for I and X for O . Lone pairs do not necessarily have to be clearly paired.		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (v)}$	$105^{\circ}-107^{\circ}$ Pyramidal Ignore trigonal, or alternative spellings of, or triangular before pyramidal	(1) Blanar	

Question Number	Acceptable Answers	Reject	Mark
	In (b) any units given must be correct. Penalise once only.		
	TE throughout		
$(\mathbf{b) (i)}$	$(0.01 \times 0.0216=)$ $2.16 \times 10^{-4} / 0.000216(\mathrm{~mol})$	$2.2 \times 10^{-4} /$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i)}$	IGNORE SF except 1SF. Penalise once only in (b)(ii), (iv), (v) and (vii).		
$4.32 \times 10^{-4} / 0.000432(\mathrm{~mol})$			
Allow $4.3 \times 10^{-4} / 0.00043(\mathrm{~mol})$ Allow TE from (b)(i) $\times 2$ Allow any SF except 1			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i i)}$	$(0.04 \times 0.02=)$		
	$8.0 \times 10^{-4} / 0.00080(\mathrm{~mol})$		
	Allow 1SF here only.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i v)}$	$\left(8.0 \times 10^{-4}-4.32 \times 10^{-4}=\right)$ $3.68 \times 10^{-4}(\mathrm{~mol})$		
	Allow $3.7 \times 10^{-4} / 0.00037$ Allow TE from (b)(iii) ans - (b)(ii) ans Allow any SF except 1		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (v)}$	$1.84 \times 10^{-4} / 0.000184$ (mol)		
	Allow $1.85 \times 10^{-4} / 0.000185 /$ $1.8 \times 10^{-4} / 0.00018$ Allow TE from (b)(iv) ans $\div 2$ Allow any SF except 1		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (v i)}$	$\mathrm{I}_{2} \mathrm{O}_{5}+5 \mathrm{CO} \rightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2}$		
	Allow multiples/fractions Ignore state symbols even if incorrect		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(b)(vii)	$\begin{align*} & \left(1.84 \times 10^{-4}\right) \times 5 \tag{1}\\ & \times 24=2.208 \times 10^{-2} / 0.02208\left(\mathrm{dm}^{3}\right) \tag{1} \end{align*}$ Allow TE from (b)(v) and or b(vi) Allow any SF except 1 Correct answer no working (2) Allow answer in cm^{3} but the unit must be given eg $22.08 \mathrm{~cm}^{3}$		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (v i i i) ~}$	Repeat the experiment (to get concordant titres)/ Divide solution into (equal) samples before carrying out titration/ divide the gas into (equal) samples before carrying out titration.	Just 'repeat the titration'	
IGNORE: Use a larger volume of gas/Use a weaker concentration of thiosulfate /Use more accurate equipment		$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i)}$	(cars have a) Catalytic converter	Just 'car converted to run on other fuels which contain carbon'	ALLOW Other suitable modifications which refer to more efficient combustion
OR	Just 'catalyst' Use of hydrogen as a fuel or solar power	Just 'more fuel efficient cars'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i)}$	The amount of $\mathbf{C O}_{\mathbf{2}}$ produced (on combustion) is equal to the amount of $\mathbf{C O}_{\mathbf{2}}$ absorbed (during photosynthesis) (1)	Just 'carbon'	
	Biofuel/ any suitable biofuel example such as bioethanol/ biodiesel/ suitable description of source such as "ethanol (1) produced from sugar"	Just 'Ethanol' Fuel cells	
ALLOW Hydrogen produced using renewable resources Stand alone marks			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a)}$	$\left(\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{AI} \rightarrow\right) \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$	$\mathrm{Fe}_{2} / \mathrm{Fe}^{2+} /$ $\mathrm{Fe}(\mathrm{II})$	$\mathbf{1}$
	Allow products in either order.		

Question Number	Acceptable Answers	Reject	Mark
22 (b)	(use of) $159.6\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ $(34.0 \div 159.6=) 0.213(\mathrm{~mol})$ $(0.213 \times 2 \times 27=) 11.502 / 11.50 / 11.5(\mathrm{~g})$ $(0.213 \times 2 \times 27=) 11.502 / 11.50 / 11.5(\mathrm{~g})$ Answer alone scores 3 If units are given, they must be correct. I gnore sf except 1 ALLOW (use of 56 for Fe so $\mathrm{Fe}_{2} \mathrm{O}_{3}=$) $160\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ $\begin{equation*} (34.0 \div 160=) 0.2125(\mathrm{~mol}) \tag{1} \end{equation*}$ $\begin{equation*} (0.2125 \times 2 \times 27=) 11.475 / 11.48 / 11.5 \tag{1} \end{equation*}$ (g)		
			3

Question Number	Acceptable Answers	Reject	Mark
22(c)	Heat (in an oven)/heat (over Bunsen burner)/ heat (to constant mass).	Just 'desiccator' Temp $<100^{\circ} \mathrm{C}$ Burn/warm Drying agents Leave to dry	

Question Number	Acceptable Answers	Reject	Mark
22(d)	To ensure complete reaction /(solids) so must be well-mixed for reactants to come into physical contact/ more surface area in contact.	J ust 'to increase the rate of reaction' Just 'both reactants are present in solid form'	ALLOW More collisions of particles IGNORE Make it easier for the reactants to mix
Any reference to the generation of energy.	$\mathbf{1}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (e) (i)}$	White light/white powder/ White smoke / White flame.	Just 'light' 'bright light' White ppt Colourless flame	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (e) (i i)}$	Magnesium oxide/MgO		
	Allow magnesium nitride/ $\mathrm{Mg}_{3} \mathrm{~N}_{2}$		
Allow equation to produce MgO, e.g.			
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$			
If name and formula given then both must be correct Ignore state symbols.			

Question Number	Acceptable Answers	Reject	Mark
22(e)(iii)	 Labelled y axis ($\mathrm{kJ} \mathrm{mol}^{-1}$) The x axis need not be labelled but if labelled must be correct If units are given on the axis they must be correct Labelled reactants above products	Enthalpy change / heat Time on the ' x ' axis $\mathrm{Mg} / \mathrm{O}_{2}$	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (e) (i v)}$	(provides the) activation energy/ (provides the) energy for the reaction to occur/heat for the reaction to occur/ overcome the energy barrier Allow this to be written on the diagram	Decreases E_{a} Just 'to initiate reaction' Acts as a catalyst	(

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (e) (v)}$	(Chemically) changed by the reaction/ (it is) changed into MgO/ Used up (by the reaction)	Just 'it reacts' Provides alternative routes or pathway. Does not speed up the reaction Just 'it takes part in the reaction'.	Allow doesn't lower activation energy

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (e) (v i)}$	(Once reaction is started it provides) enough energy to be self-sustaining/ energy only needed at the start as the reaction is exothermic	Chain Reaction Just 'highly exothermic reaction'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (f)}$	It may ignite at any time/delay in the reaction/molten metal may be ejected	Just ‘explosion' Flammable/ fire	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (g)}$	The iron is melted/molten/liquid (and joins the two pieces of metal/railway line)	Melt Aluminium Just 'melt the metal' Just 'melt the railway lines'	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (h)}$	Aluminium is readily available/abundant/cheap/easy to handle/easy to store/ $\mathrm{Al}_{2} \mathrm{O}_{3}$ has a low density so floats (and avoids contaminating the weld)	Al does not corrode	
OR	Reverse argument/other metals may not react and release enough heat (to melt the iron)/other metals are difficult to store	Other metals are too exothermic.	

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (a)}$	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{3}$		
Allow elements in any order.	Any other answers	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (b)}$	(Secondary) alcohol/Hydroxyl	C-OH/ Just 'OH Group' Primary alcohol	
	OR	C=C Just 'double bond'	
	Olkene/Carbon-Carbon double bond	Ester	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (i)}$	$\mathrm{ROH}+\mathrm{Na} \rightarrow \mathrm{RO}^{(-)} \mathrm{Na}^{(+)}+1 / 2 \mathrm{H}_{2} \quad$ (1) Allow multiples Ignore state symbols even if incorrect Effervescence/Fizzing/Bubbles	RNaO	
OR Sodium dissolves/disappears/ decreases in size OR White solid forms Stand alone marks	(1)	White ppt	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 3 (c) (i i)}$	$\mathrm{ROH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$ (1) Ignore state symbols even if incorrect				
	Steamy /misty / white and fumes/gas(1) Stand alone marks Allow $\mathrm{PCl}_{3} \mathrm{O}$	White smoke		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (\text { iii) }}$	(HCl poses the greater risk - No credit but must be stated for the second mark)	Harmful/ ozone (because it is)toxic/ corrosive/poisonous/ reference damage to skin (1)	Flammable Just ‘acidic' Just ‘dangerous'

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	Agent: sodium dichromate((VI)) / $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ potassium dichromate((VI))/ $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (1) sulfuric acid/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ If name and formula are given, both must be correct. Conditions: Distillation Allow 'Fractional distillation' Acidified dichromate/ H^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ scores 1 mark Allow the acid as a reagent or as a condition. Acid can be conc. or dilute	KMnO_{4} Any other acids Reflux/ Just 'heat'	

Question Number	Acceptable Answers	Reject	Mark
*23(d)(ii)	(infrared radiation causes) stretching/ bending/changes in bond polarity/bond vibration	Molecular vibration Bonds broken	different bonds absorb different IR (frequencies/wavelength/wavenumber)/ different peaks for different groups (1) compare absorption with database / data booklet

Question Number	Acceptable Answers	Reject	Mark
*23(e)	Point 1: (Alkanes) London Forces/ Dispersion forces/van der Waals' forces Point 2: (Arises) - instantaneous dipole/momentary imbalance in electron density Point 3: which induces dipole in adjacent molecule (and results in attraction) / description of induction Ignore reference to atoms/molecules Point 4: (Alcohols) Hydrogen bonds Point 5: (Arises) - oxygen's higher electronegativity creates dipole/large difference in electronegativity Point 6: Bond is attraction between (lone pair of electrons on) O of one molecule and H of another molecule Point 7: London forces are weaker than hydrogen bonds Allow "alkanes intermolecular force weaker (than that of alcohols)" for point 7	Just 'Id-Id' Any other forces in combination Any reference to permanent dipoles loses points $2 \& 3$ London Forces	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (f)}$	Unique fragmentation/ different fragmentation/ different peak pattern	Just ‘different masses'	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (g)}$	Polymers have low volatility/ do not bind to receptors in nose/ Polymers do not have an aroma/ Polymer formation does not involve the 'aroma' molecules/ The chemicals causing the aroma are not affected (by the enzyme)		

TOTAL FOR SECTI ON C = 23 MARKS TOTAL FOR PAPER = $\mathbf{8 0}$ MARKS

